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Computer simulations of electrorheological fluids in the dipole-induced dipole model
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We have employed the multiple image method to compute the interparticle force for a polydisperse elec-
trorheological(ER) fluid in which the suspended particles can have various sizes and different permittivities.
The point-dipole(PD) approximation, being routinely adopted in the computer simulation of ER fluids, is
known to err considerably when the particles approach and finally touch due to multipolar interactions. The PD
approximation becomes even worse when the dielectric contrast between the particles and the host medium is
large. From the results, we show that the dipole-induced-dif@lle) model yields very good agreements with
the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we
have employed the DID model to simulate the athermal aggregation of particles in ER fluids, both in uniaxial
and rotating fields. We find that the aggregation time is significantly reduced. The DID model partially
accounts for the multipolar interaction and is simple to use in the computer simulation of ER fluids.
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I. INTRODUCTION II. IMPROVED MULTIPLE IMAGE METHOD

Here we briefly review the multiple images methid
and extend the method slightly to handle different dielectric
constants. Consider a pair of dielectric spheres, of mdid
b, dielectric constants, ande; , respectively, separated by a
Gistancer. The spheres are embedded in a host medium of a
dielectric constante,. Upon the application of an electric
field E,, the induced-dipole moment inside the spheres are,
spectively, given bySI unity

The prediction of the yield stress for electrorheological
(ER) fluids is the main concern in theoretical investigations
of ER fluids. Early studies failed to derive the experimental

on a point-dipole approximatiof2,3]. The point-dipole ap-
proximation is routinely adopted in computer simulations be
cause it is simple and easy to use. Since many-body a
multipolar interactions between particles have been ne-
glected, the strength of ER effects predicted by this model is Pao=4mege,BEaS,  ppo=4mege, 8 Egb®, (1)
of an order lower than the experimental results. Hence, sub-

stantial effort has been made to sort out more accuratehere the dipolar factorg,3’ are given by
models.

Klingenberg and co-workers developed an empirical force €1~ € €1~ €
expression from a numerical solution of Laplace’s equation B= e +2e.’ =
[4]. Davis used the finite-element meth@sl]. Clercx and ! 2
Bossis developed a full multipolar treatment to account for
the multipolar polarizability of spheres up to 1000 multipolar
orders[6]. Yu and co-workers developed an integral equa-
tion method that avoids the match of complicated boundary o
conditions on each interface of the particles and is applicable paT:(sinha)3E {

2

€] +2ep

From the multiple image methd®], the total dipole mo-
ment inside sphera is

Paod®(—B)" H(=p)" "

to nonspherical particles and multimedidl. Although the n=1 [ (bsinhna+asinh(n—1)a)?
above methods are accurate, they are relatively complicated 3 N R
to use in the dynamic simulation of ER fluids. Alternative , Pood (=B)"(=8") 3)
models have been developed to circumvent the problem: the (r sinhna)® '
coupled-dipole model[8] and the dipole-induced-dipole
(DID) model[9], wh?ch take care of mutgal polarization ef- _ ; o { Paob3(28)" 128"~
fects when the particles approach and finally touch. PaL=(sinha)3>, - . 3
The DID model accounts for multipolar interactions par- n=1[ (bsinhna+asinh(n—1)a)
tially and is simple to use in computer simulation of ER (28 (25"~ 1
fluids [9]. As an illustration, we employed the DID model to + Pooa”(28)"(28") (4)
simulate the athermal aggregation of particles in ER fluids (r sinhna)®

both in uniaxial and rotating fields. We find that the aggre-

gation time is significantly reduced. In Sec. Il, we review thewhere the subscripf§(L) denote a transvergéongitudina)
multiple image method and establish the DID model. In Secfield, i.e., the applied field is perpendiculgraralle) to the

I1l, we apply the DID model to the computer simulation of line joining the centers of the spheres. Similar expressions
ER fluids in a uniaxial field. In Sec. IV, we extend the simu- for the total dipole moment inside sphdvean be obtained
lation to athermal aggregation in rotating fields. Discussiorby interchanginga andb, as well asg and 8’. The param-

of our results will be given in Sec. V. eter o satisfies
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rZ_aZ_bZ 1.0 o T
cosha= 2—b . / —— MID
a >~ — X Klingenberg

gos | 1
In Ref.[9], we checked the validity of these expressions byM
comparing with the integral equation method. We showed 40 . ' )
that these expression are valid at high contrast. Our im- 15 20 23 30

proved expressions will be shown to be good at low contrast 3¢ X ' ' '
as well(see below. 20| |'. i
The force between the spheres is given| b§] f}o e ot T

Eo @ Eo @

0 1 1 1
Fr=> E(paT"_ Pb1)s Fi=> E(paL"' Po)- (5 j’Zl.o 15 20 25 3.0
For monodisperse ER fluidsaE&b, B=8' andp,=py, 20 i
=Ppo), Klingenberg defined an empirical force expression g Py
[4]: 10 T¢5F
00 : : :
F . ~ ) A 10 15 20 25 3.0
F_:(ZKH cos 6—K, sir? 9)r+Kpsin200,  (6) ¢
PD

) ) ) . FIG. 1. The comparison of the multiple image results with
being normalized to the point-dipoléPD) force Fpp=  Kiingenberg's three force function&, , K, andKy are plotted
—3pg/r*, whereK;, K, , andK; (all tending to unity at as functions of the reduced separation between two spherical
large separationsare three force functions being determined particles.
from the numerical solution of Laplace’s equation. The Klin-
genberg’s force functions can be shown to relate to our mulfgcus on the casa=b and study the effect of different di-
tiple image moments as followtherea=b, B=p', and  electric constants. In Fig. 2, we plot the interparticle force in

Pa=Pb): the longitudinal field case against the reduced separation
~ ~ between the spheres féa) 8=9/11 (e;/e,=10) and(b)
K _1dp K __9pr K :£(~ 5, (7)) B=18 (e1/e,=2) and variouss'/f ratios. At low con-

=2 gr ™4 or + Ty PTT R trast, the DID model almost coincides with the MID results.

_ _ In contrast, the PD model exhibits significant deviations. It is
wherep, =p, /FppEq and pr=p1/FppEy are the reduced evident that the DID model generally gives better results
multiple image moments of each sphere. We computed ththan PD for all polydispersity.
numerical values of these force functions separately by the
approximant of Table | of the second reference of Ré4f.
and by Eq.(7).

In Fig. 1, we plot the multiple image results and the Klin-  The multiple image expressiof&gs.(3) and(4)] allows

genberg’'s empirical expressions. We show results for thgs to calculate the correction factor defined as the ratio be-
perfectly conducting limit 3=1) only. For convenience, we tween the DID and PD forces:

define the reduced separatian=r/(a+b). For reduced
separatioro>1.1, simple analytic expressions were adopted

IIl. COMPUTER SIMULATION IN THE DID MODEL

b . . . . F(i) Ba3r5 ﬁrbSrS

y Klingenberg. As evident from Fig. 1, the agreement with _ DD _,_ _

the multiple image results is impressive at large reduced FE (r’=b%)*  (r2_a2)4
separationo>1.5, for all three empirical force functions.

However, significant deviations occur fer<1.5, especially BB a®b3(3r’—a’—b?)

for K. For o<1.1, alternative empirical expressions were + (r2—a2—p?)* ' ®

adopted by Klingenberg. Fdf, , the agreement is impres-

sive, although there are deviations for the other two func-

tions. From the comparison, we would say that reasonable F(D”{D 2Ba%%  2B'b3°

agreements have been obtained. Thus, we are confident that =1+ (r2—p?)* + 224

the multiple image expressions give reliable results. (r"=a%)
The analytic multiple image results can be used to com- 4B88'a%b3(3r2—a2—b?)

pare among the various models according to how many

terms are retained in the multiple image expressi¢®sPD (r’—a?-b?*

model:n=1 term only,(b) DID model:n=1 ton=2 terms

;Jonlgl,:in(tje(::%?umpole induced-dipol€MID) model:n=1 FO L B’ X /b33 348’ a%°
In a previous wor{9], we examined the case of different  F{) 2(r°=b%° " 2(r2—a?)?  (r2—a2-p?)3’

size but equal dielectric constanB€ B') only. Here we (10

, C)
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=B p'=1.05p wherez is the displacement of one sphere from the center of
L T mass. The separation between the two spheres is dhus
=2z and the initial condition isl=d, att=0. Equation(11)

is a dimensionless equation. We have chosen the following
natural scales to define the dimensionless variables:

F,(dyne)
&

3
F,(dyne)
s
3

— MID

- X DID
-0.60 F *——XPD B -0.60 i 6 77Ca.2
length ~a, time =ty~ ,
-0.80 L . L . -0.80 FO
10 11 12 13 14 15 10
p'=1.1p
0.00 — ‘ 000 eoeéazES

force =Fy~ P

whereE, is the field strengthm is the mass, and, is the
coefficient of viscosity. Using typical parameters, we figd

F,(dyne)
&
&

F, (dyne)
s
8

-060 | -060 - is of the order of milliseconds. We have followed Klingen-
berg[2,3] to ignore the inertial effect, captured by the pa-
0% 0 Il 1z 13 14 1s 0805 rameterG:
(a) <]
B-p oMeEg
0.00 T T T T 0.000 = ﬁ .
001 - 0010 | 144m=7ca
T om | T om0 The neglect ofG can be justified as follows. For values
> > .
Y 12 ol common to the ER suspensiony.~0.1 Pas,m~8
=9 - — MID Iz, 8 — 13 —6 . . .
* - X DID X 10 kg, a=~5x 10 ° m [2]. The inertial termG is of
-0.04 - —— PD b -0.040

the order 108. We also neglect the thermal motion of the
T 0,050 N - particles, which is a valid assumption at high fields. We
10 11 12 13 14 15 10 11 12 13 14 15 e e . .

B=1.1p 8128 should remark that the initial separatidg is related to the
0.000 — 0.000 — volume fraction¢, defined as the ratio of the volume of the

sphere to that of the cube, which contains the spf&a.e.,
¢= Vsphere,lvcubea and

-0.010 -0.010

© _p0 - T gm0t
=3 >
) k) 1/3
o 0030 w0030 @: l)
0040 | 0040 - 2a \6¢
b) 000, TTIT 1z 13 17 s w000, TTIT iz 13 17 1s For the PD approximation, Eq11) admits an analytic solu-
o s tion:

FIG. 2. The interparticle force plotted against the reduced sepa- 1/5
ration o between two spherical particles for several dipole factors 7=
B’ of one spherical particle in units @ for longitudinal fields:(a)

B=9/11 and(b) 8= 1/3.

5 2
E <

2 8

We integrate the equation of motion by the fourth-order

whereF§=3p,oppo/r* FUL=—6p.oppo/r*, andF}=  Runge-Kutta algorithm, with time step=0.01 and 0.001
—3PaoPro/r* are the point-dipole forces for the transverse,for small and large volume fractions, respectively. We plot
longitudinal, and” cases, respectively. These correction fac-the displacemerd/a vs the time graptinot shown hergfor
tors can be readily calculated in the computer simulation othe PD case and find excellent agreement between analytic
polydisperse ER fluids. The results show that the DID forceand numerical results.
deviates significantly from the PD force at high contrast For the DID model, we have to integrate the equation of
when g and 8’ approach unity. The dipole induced interac- motion numerically. In Fig. 3, we plot the displacemelha
tion will generally decreaséncrease the magnitude of the vs the time graph for the aggregation of two spheres in
transverse(longitudina) interparticle force with respect to uniaxial fields. At small volume fractions, i.e., when the ini-
the PD limit. tial separation is large, the time for aggregation is large and

For simplicity, we consider the case of two equal sphereshe DID results deviate slightly from the PD results. How-
of radiusa, initially at rest and at a separatiolg. An electric ~ ever, at large volume fractions, the DID results are signifi-
field is applied along the line joining the centers of thecantly smaller than the PD calculations. The effect becomes
sphere. The equation of motion is given by even more pronounced at large

In Fig. 4(a), we plot the ratio of aggregation time of the
DID to PD cases. The results showed clearly that the aggre-
gation time has been significantly reduced when mutual po-

dz_

dt —F”(ZZ), (11)
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FIG. 3. The displacement-time graph for athermal aggregation
of two spherical particles in a uniaxial field for various volume
fractions and dipole factors.
larization effects are considered. The reduction in aggrega: 08
tion time becomes even more pronounced for small initial
separations.
0.6
Q
<
IV. ATHERMAL AGGREGATION IN THE ROTATING \g
FIELD < 0.4
Recently, Martin and co-workef4 1] demonstrated ather-
mal aggregation with the rotating field. When a rotating field
is applied in thex-y plane at a sufficiently high frequency
that particles do not move much in one period, an average
attractive dipolar interaction is created. The result of this is ‘ ‘ ‘
the formation of plates in thg-y plane. Consider a rotating 2 25 3 35 4
field applied in thex-y plane: E,=E, coswt,E,=Ejsinat. (b) dia
The dimensionless equation of motion for the two sphere ) ) )
case becomes FIG. 4. The reduction factor of the aggregation time of two

spherical particles plotted against the initial separation (@r
uniaxial field and(b) rotating field.ry,p and 7pp are the aggrega-

dx tion times in the DID and PD models, respectively.

—=F|cos wt+F, sirf wt,

y .
ai ——=—Fpsin 2wt,

d
dt
(13)  field cases. The oscillating effect of a rotating field is less
observable when the time step is smaller than this maximum

where ,y) is the displacement of one sphere from the cenvalue.

ter of mass. For large, we may safely neglect the com- We plot the displacement vs time grafifot shown here
ponent of the motion. In the PD approximatiof,= for the PD case in a rptatlng field and find an excgllent agree-
—6p3/r* andF, =3p3/r*, we find the analytic result ment between analytic and numerical results. It is found that
the aggregation time is four times of that of the uniaxial field
do\5  15p2 15 case. In fact, Eq.14) reduces to Eq.12) asw— 0. However,
:[(70) - GT&?(ZQ,H;:, sin2ot)| . (14  atlargew, Eq. (14) becomes
do\® 15pat]¥®
The separation between the two spheres is qus2x, with X= 7) T 32 '

the initial separationi=d, att=0. In the rotating field case,

we also integrate the equation of motion by the fourth-ordeiThat is, in the PD approximation, the time-average force
Runge-Kutta algorithm, but witdt=1/(4w) and 1/(4@) as  becomes 1/4 of that of the uniaxial field case. It is because
the time steps. Note thait=1/(4w) should be the largest the two dipole moments spend equal times in the transverse
time step that can be used because we must at least gmd longitudinal orientations, whilgj=—2F, in the PD
through a cycle consisting of the transverse and longitudinatase, leading to an overall attractive force that is 1/4 of the
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force of the uniaxial field case. When the multiple image 4 ‘ , 26 ‘ ,
force is included, we expect that the magnitudeFofin- a5 —— Db asg — DID
creases while that df | decreases and we expect an even ™ 2.4
larger attractive force when the spheres approach. In this% al loa
case, the aggregation time must be reduced even mor 05
significantly. 2.5 -$=0.0866 121
In Fig. 4(b), we plot the ratio of the aggregation time of ’
the DID to PD cases fop=1 and severak. The w=0 20 10 20 80 40 50 ° 5

curve is just for the uniaxial field case. The results showed 4
clearly that the aggregation time has been significantly re-
duced when mutual polarization effects are considered. The
reduction in aggregation time becomes even pronounced fog 4 |
small initial separations. It is observed that fluctuations exist
when the initial separation between the spheres ia 24
less. It is because the motion is sensitive to the initial orien-

tation of the dipoles when the spheres are too close. 20 10 20 30 40

Similarly, we consider the aggregations of three and four t/1,

equal spheres, arranged in a chain, an equilateral triangle and
a square. For a chain of three spheres in a rotating field, the
central sphere does not move, while the two spheres at bo#ﬁ’
ends move towards the central sphere. For three spheres I

an equilateral triangle, the center of magsm,) will not l%raph that the results are correct. In Fig. 5, the oscillation

move while each sphere moves towards the c.m., subject : . : .
Lo amplitude is reduced when the rotating frequency increases
the force of the other two spheres. The same situation occurts : ; N . . i
: . : I the simulation. This is consistent with the assumption
for four spheres in a square, in which each sphere movegs

i made in our analytic expressions. In Fig. 6, it is observed
'[S%\ﬁzrrzz the c.m., subject to the force of the other thre(?hat fluctuations exist when the initial separation between the

In the PD approximation, we report the analytic results astspheres is 2&or less in all three graphs. Again, it is because
follows. For three spheres in a chain, he motion is sensitive to the orientation of_the dipoles Whe_:n
the spheres are close. From the simulation, the reduction

—— DID
3.5

L ¢=0.0866
25 t20

FIG. 5. The displacement-time graph for the athermal aggrega-
n of two spherical particles in a rotating field for various volume
ctions and dipole factors.

2 1/5 effects become even more pronounced for the rotating elec-
2555 o o
X= dg— 00 (2wt + 3 sin 2wt) (15) tric field case than the uniaxial field case.
For three spheres in an equilateral triangle, V. DISCUSSION AND CONCLUSION
5 U Here a few comments on our results are in order. Bonn-
2 5 . -
do Po . ecaze and Bradyl4] included corrections to PD by means of
x=||—=| — (4wt —sin 2wt) (16)
\/§ 8\/§w .
. 008} ]
For four spheres in a square, ol
5 15 Bod | =20
do |~ 15p5(4\2+1 8\2-3 02 === 0 =10
2/ 8w g @t— —g —sin2et °; 25 3 35 4
1 T
(17) 08 | B
. . Sosf ]
In each of the above casesis the distance of one sphere ‘g, [ ]

from the center of mass. In the case of three spheres in & g2 K-, ®
chain, the separation between the spheres is the sade as o ' ' '

: ; . 25 3 35 4
=X. In the case of three spheres in an equilateral triangle, the . . .
separation between spheresdis \3x. In the case of four o8| :
spheres in a square, the separation between sphems is & 0.6 ]
= \2x. Again, we integrate the equation of motion by the & %* ]
fourth-order Runge-Kutta algorithm. We find excellent o , , . © |
2 25 3 35

agreements between the analytic and numerical regubts

d/a

shown herg
It has been found that the displacement in yhirection FIG. 6. The reduction of the aggregation time for clusters of
is about 0.5% fow =5 and a largew has been used in the three and four spherical particles plotted against the initial separa-
simulation. On the other hand, it is time consuming for simu-tion in the rotating fieldp p and7pp are the aggregation times in
lations withw>20. It is evident from the displacement-time the DID and PD models, respectively.

051506-5



Y. L. SIU, JONES T. K. WAN, AND K. W. YU PHYSICAL REVIEW E64 051506

an energy approach. In their approach, both the long-rangeolydisperse ER fluids have attracted considerable interest
many-body interactions and the lubricationlike near-field in-recently because the size distribution and dielectric proper-
teractions are included in the computer simulations. Thaies of the suspending particles can have significant impact
comparison to our approach will be a topic for future work. on the ER respondd.3]. We should extend the simulation to
We believe that the multipolar interactions are more importhe polydisperse case by using the DID model.
tant than the many-bodlocal-field effects. In Ref[8], as In summary, we have used the multiple image to compute
well as Ref.[15], the particles in ER fluids are treated asthe interparticle force for a polydisperse electrorheological
point dipoles while their dipole moments are determined byfluid. We apply the formalism to a pair of spheres of differ-
adding the local-field corrections. In our model, the particlesent dielectric constants and calculate the force as a function
are treated as extended dielectric spheres. The additionaf the separation. The results show that the PD approxima-
terms in DID arise from multipole interactions, rather thantion is oversimplified. It errs considerably because many-
from local-field corrections. In this regard, the DID model is body and multipolar interactions are ignored. The DID
adequate for aggregation problems while it may be unsatisnodel accounts for multipolar interactions partially and
factory for calculating shear stresses in ER fluids due to larggields overall satisfactory results in the computer simulation
multipole interactions for touching spheres. For sheawf ER fluids while it is easy to use.
stresses, however, we had better use the more accurate MID
model.
In this work, we studied the aggregation time for several
particles. We should also examine the morphology of aggre- This work was supported by the Research Grants Council
gation, due to multiple image forces. In this connection, weof the Hong Kong SAR Government under Grant No.
can also examine the structural transformation by applyingCUHK4284/00P. We thank Dr. Z. W. Wang for sending us a
the uniaxial and rotating fields simultaneoufiy?]. program on computer simulation of electrorheological fluids.
We have done simulation in the monodisperse case. Redl.L.S. is grateful to M. L. Wong for her helpful advice in
ER fluids must be polydisperse in nature: the suspendingrogramming throughout the course of this work. K.W.Y.
particles can have various sizes or different permittivitiesacknowledges useful discussions with Professor G. Q. Gu.
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